Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme* and David J. Watkin

Chemical Crystallography, 9 Parks Road, Oxford OX1 3PD, England

Correspondence e-mail: ashley.hulme@pmb.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.039 wR factor = 0.100 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,4,4-Trifluoro-trans-2-butenoic acid

The title compound, $C_4H_3O_2F_3$, crystallizes with two molecules in the asymmetric unit. These two molecules form a dimer *via* a pair of hydrogen-bonding interactions between the carboxylic acid groups of the two molecules. The correspondences of H···O distances and O-H···O angles are 1.77 (3) Å and 179 (3)°, and 1.59 (4) Å and 175 (4)°. The uncertainty in their position indicates disorder in the carboxylic acid H atoms.

Comment

The structure of the title compound, (I), was determined as part of a study into the polymorphic forms of the related compound tetrolic acid, and an investigation into the structures preferentially formed by small compounds with a single carboxylic acid moiety. Compounds with a double bond α to the C atom of the carboxylic acid group have a strong tendency to form dimers. This compound is no exception, crystallizing in the space group $P2_1/c$. The two molecules forming the dimer have a non-crystallographic centre of symmetry between the carboxylic acid groups [at x = 0.586 (3), y = 0.360(3) z = 0.696(3)]. This can be contrasted with the structure of crotonic acid (Shimizu et al., 1974), which utilizes a crystallographic centre of symmetry to form the dimer. The hydrogen-bonded dimers form ribbons through close contacts involving the F atoms ($F \cdot \cdot F$ distances of 3.0, 3.3 and 3.4 Å), and the ribbons lie side-by-side to form sheets.

Experimental

A crystal of suitable quality for single-crystal X-ray diffraction was obtained from the sample supplied by Fluorochem. The synthesis of the title compound has been described by Haszeldine (1957).

Crystal data

$C_4H_3F_3O_2$	$D_{\rm x} = 1.727 \ {\rm Mg \ m}^{-3}$
$M_r = 140.06$	Mo K α radiation
Monoclinic, $P2_1/c$	Cell parameters from 2437
$a = 10.8280 (2) \text{\AA}$	reflections
b = 9.8064 (2) Å	$\theta = 5-27^{\circ}$
c = 10.1768 (2) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\beta = 94.307 \ (1)^{\circ}$	$T = 190 { m K}$
V = 1077.56 (4) Å ³	Plate, colourless
Z = 8	$0.30 \times 0.30 \times 0.15 \text{ mm}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 31 March 2003 Accepted 7 April 2003 Online 23 April 2003

organic papers

Data collection

Nonius KappaCCD diffractometer ω scans Absorption correction: multi-scan (DENZO and SCALEPACK;

Otwinowski & Minor, 1997) $T_{min} = 0.94, T_{max} = 0.97$ 4700 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.100$ S = 0.992429 reflections 187 parameters 2429 independent reflections 1961 reflections with $I > 2\sigma(I)$ $R_{int} = 0.01$ $\theta_{max} = 27.5^{\circ}$ $h = -14 \rightarrow 14$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

All H-atom parameters refined $w = 1/[\sigma^2(F^*) + (0.0388p)^2 + 0.474p]$ where $p = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

O101-C103	1.282 (2)	O1-C3	1.281 (2)
O102-C103	1.239 (2)	O2-C3	1.249 (2)
C103-C104	1.485 (2)	C3-C4	1.482 (2)
C104-C105	1.308 (2)	C4-C5	1.312 (2)
C105-C106	1.487 (2)	C5-C6	1.488 (2)
C106-F107	1.327 (2)	C6-F7	1.329 (2)
C106-F108	1.338 (2)	C6-F8	1.331 (2)
C106-F109	1.323 (2)	C6-F9	1.330 (2)
O101-C103-O102	124.4 (1)	O1-C3-O2	124.5 (1)
O101-C103-C104	115.0(1)	O1-C3-C4	114.6 (1)
O102-C103-C104	120.6 (1)	O2-C3-C4	120.9 (1)
C103-C104-C105	121.4 (1)	C3-C4-C5	122.4 (1)
C104-C105-C106	123.1 (1)	C4-C5-C6	122.7 (2)
C105-C106-F107	111.7 (1)	C5-C6-F7	111.7 (1)
C105-C106-F108	111.0 (1)	C5-C6-F8	111.7 (1)
F107-C106-F108	105.5 (1)	F7-C6-F8	106.1 (1)
C105-C106-F109	113.5 (1)	C5-C6-F9	113.1 (1)
F107-C106-F109	107.3 (1)	F7-C6-F9	106.4 (1)
F108-C106-F109	107.4 (1)	F8-C6-F9	107.4 (1)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1-H1···O102	0.92 (3)	1.76 (3)	2.676 (2)	179 (3)
O101-H101···O2	1.07 (4)	1.59 (4)	2.654 (2)	175 (4)

Figure 1

Crystallographic diagram of the asymmetric unit, with atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were refined isotropically; C–H distances were in the range 0.88 (2)–0.92 (2) Å and O–H distances were 0.91 (3) and 1.07 (4) Å.

Data collection: *COLLECT* (Nonius, 1997–2001); cell refinement: *DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* and *SCALEPACK*; program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 2001); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

ATH thanks the Western Education and Library Board for financial support.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Haszeldine, R. N. (1957). GB Patent No. 772 109.
- Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Shimizu, S., Kekka, S., Kashino, S. & Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627–1631.
- Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. & Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.