Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ashley T. Hulme* and David J. Watkin

Chemical Crystallography, 9 Parks Road, Oxford OX1 3PD, England

Correspondence e-mail:
ashley.hulme@pmb.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=190 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.039$
$w R$ factor $=0.100$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4,4-Trifluoro-trans-2-butenoic acid

The title compound, $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~F}_{3}$, crystallizes with two molecules in the asymmetric unit. These two molecules form a dimer via a pair of hydrogen-bonding interactions between the carboxylic acid groups of the two molecules. The correspondences of $\mathrm{H} \cdots \mathrm{O}$ distances and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are 1.77 (3) \AA and $179(3)^{\circ}$, and 1.59 (4) \AA and 175 (4) ${ }^{\circ}$. The uncertainty in their position indicates disorder in the carboxylic acid H atoms.

Comment

The structure of the title compound, (I), was determined as part of a study into the polymorphic forms of the related compound tetrolic acid, and an investigation into the structures preferentially formed by small compounds with a single carboxylic acid moiety. Compounds with a double bond α to the C atom of the carboxylic acid group have a strong tendency to form dimers. This compound is no exception, crystallizing in the space group $P 2_{1} / c$. The two molecules forming the dimer have a non-crystallographic centre of symmetry between the carboxylic acid groups [at $x=0.586$ (3), $y=0.360(3) z=0.696(3)]$. This can be contrasted with the structure of crotonic acid (Shimizu et al., 1974), which utilizes a crystallographic centre of symmetry to form the dimer. The hydrogen-bonded dimers form ribbons through close contacts involving the F atoms ($\mathrm{F} \cdots \mathrm{F}$ distances of $3.0,3.3$ and $3.4 \AA$), and the ribbons lie side-by-side to form sheets.

Experimental

A crystal of suitable quality for single-crystal X-ray diffraction was obtained from the sample supplied by Fluorochem. The synthesis of the title compound has been described by Haszeldine (1957).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~F}_{3} \mathrm{O}_{2} \\
& M_{r}=140.06 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=10.8280(2) \AA \\
& b=9.8064(2) \AA \\
& c=10.1768(2) \AA \\
& \beta=94.307(1)^{\circ} \\
& V=1077.56(4) \AA^{3} \\
& Z=8
\end{aligned}
$$

Received 31 March 2003
Accepted 7 April 2003
Online 23 April 2003

Data collection
 Nonius KappaCCD diffractometer ω scans
 Absorption correction: multi-scan
 (DENZO and SCALEPACK;
 Otwinowski \& Minor, 1997)
 $T_{\text {min }}=0.94, T_{\text {max }}=0.97$
 4700 measured reflections
 2429 independent reflections
 1961 reflections with $I>2 \sigma(I)$
 $R_{\text {int }}=0.01$
 $\theta_{\text {max }}=27.5^{\circ}$
 $h=-14 \rightarrow 14$
 $k=-12 \rightarrow 12$
 $l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.100$
$S=0.99$
2429 reflections
187 parameters

All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F^{*}\right)+(0.0388 p)^{2}+0.474 p\right]$ where $p=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\max }=-0.31 \mathrm{e}_{\mathrm{m}} \AA^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O101-C103	$1.282(2)$	O1-C3	$1.281(2)$
O102-C103	$1.239(2)$	O2-C3	$1.249(2)$
C103-C104	$1.485(2)$	C3-C4	$1.482(2)$
C104-C105	$1.308(2)$	C4-C5	$1.312(2)$
C105-C106	$1.487(2)$	C5-C6	$1.488(2)$
C106-F107	$1.327(2)$	C6-F7	$1.329(2)$
C106-F108	$1.338(2)$	C6-F8	$1.331(2)$
C106-F109	$1.323(2)$	C6-F9	$1.330(2)$
O101-C103-O102	$124.4(1)$	O1-C3-O2	$124.5(1)$
O101-C103-C104	$115.0(1)$	O1-C3-C4	$114.6(1)$
O102-C103-CC104	$120.6(1)$	O2-C3-C4	$120.9(1)$
C103-C104-C105	$121.4(1)$	C3-C4-C5	$122.4(1)$
C104-C105-C106	$123.1(1)$	C4-C5-C6	$122.7(2)$
C105-C106-F107	$111.7(1)$	C5-C6-F7	$111.7(1)$
C105-C106-F108	$111.0(1)$	C5-C6-F8	$111.7(1)$
F107-C106-F108	$105.5(1)$	F7-C6-F8	$106.1(1)$
C105-C106-F109	$113.5(1)$	C5-C6-F9	$113.1(1)$
F107-C106-F109	$107.3(1)$	F7-C6-F9	$106.4(1)$
F108-C106-F109	$107.4(1)$	F8-C6-F9	$107.4(1)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 102$	$0.92(3)$	$1.76(3)$	$2.676(2)$	$179(3)$
$\mathrm{O} 101-\mathrm{H} 101 \cdots \mathrm{O} 2$	$1.07(4)$	$1.59(4)$	$2.654(2)$	$175(4)$

Figure 1
Crystallographic diagram of the asymmetric unit, with atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.

H atoms were refined isotropically; $\mathrm{C}-\mathrm{H}$ distances were in the range $0.88(2)-0.92(2) \AA$ and $\mathrm{O}-\mathrm{H}$ distances were 0.91 (3) and 1.07 (4) \AA.

Data collection: COLLECT (Nonius, 1997-2001); cell refinement: $D E N Z O$ and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: $D E N Z O$ and $S C A L E P A C K$; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

ATH thanks the Western Education and Library Board for financial support.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Haszeldine, R. N. (1957). GB Patent No. 772109.
Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Shimizu, S., Kekka, S., Kashino, S. \& Haisa, M. (1974). Bull. Chem. Soc. Jpn, 47, 1627-1631.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper, R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

